
SCITT – COSE
Managing SCITT Statements as COSE Payloads

Attached | Detached | Hashed

Reference: https://or13.github.io/draft-steele-cose-hash-envelope/draft-steele-cose-hash-envelope.html

Steve Lasker
SteveLasker.blog
Director of Ecosystem

DataTrails.ai

https://or13.github.io/draft-steele-cose-hash-envelope/draft-steele-cose-hash-envelope.html
https://stevelasker.blog/
DataTrails.ai

Statement Artifact

SCITT

SCITT records
 Who made
 an immutable Statement
 about an Artifact
 recorded “when”

Identity

Statement Artifact

SCITT

Who are the Who’s

Identity

• People (Whoville who’s)
• Services
• Processes
• Companies
• Groups
• Anything with any type of identity

SCITT uses x509 as an example
No intended limitation of identity types
It’s up to the SCITT Service to decide
what types of identities they’ll support

issuer : tstr,

subject : tstr,

* : int => any

CWT_Claims

Statement Artifact

Subject:
synsation-corp-net-monitor-v1

What are Statements?
• SBOMs about binaries

• Test results
• Compliance to certifications
• Security Scans
• VEX Reports

• Contracts about a deal
• C2PA Manifests about digital media
• Responsible AI Claims

• Model Cards

Identity

SCITT

Statement Artifact

Identity

SCITT

issuer : tstr,

subject : tstr,

* : int => any

CWT_Claims

synsation-corp/net-monitor/v1

The format of Subject is not part of
the SCITT Architecture.
Likely industry specific, and poised
for other IETF drafts

What is an Artifact?
Anything that needs a verifiable statement
• Binary data (software, docker containers)
• AI Models
• vCons
• Digital media (pictures, videos, contracts)
• Physical goods (parts, nuclear waste)
• Subject is the Artifact Identifier

To Be Signed Bytes
StatementCOSE_SIGN1 (Envelope)

protected : bstr .cbor Protected_Header

payload : bstr

issuer : tstr,

subject : tstr,

* : int => any

CWT_Claims

&(CWT_Claims : 15) => CWT_Claims

? &(content_type: 3) => tstr / uint

? &(alg : 1) => int

? &(kid : 4) => bstr

? &(x5t : 34) => COSE_CertHash

* int => any

Protected_Header

Artifact

synsation.io

provenance.json

synsation.io/product/v123

Issuer

application/json

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

Signed Bytes
Statement Artifact

provenance.json

Issuer

protected : bstr .cbor Protected_Header

payload : bstr

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

SCITT Statement

* int => any

Unprotected_Header

Statement Artifact

Issuer

signature : bstr

unprotected : Unprotected_Header

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

Registering

SCITT Ledger
Append-only

Log

External Storage

Transparency Service

How large is the COSE_Sign1 Envelope?
Protected Header ~1k
Unprotected Header 0
Signature ~1k
Payload (Statement) 1k-50gb

➢ Is Size the constraint
➢ Is the Statement already stored somewhere else?
➢ Do we need to continually pass content for verification?
➢ What value are we getting by storing the statement in the payload of

the Signed Statement

2k

~50.002gb

signature : bstr

unprotected : Unprotected_Header

Unprotected_Header

* int => any

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

signature : bstr

unprotected : Unprotected_Header

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

Detached Payloads

SCITT Ledger
Append-only

Log

External Storage

Transparency Service

? &statement_location => tstr "https://sbom.sh/retrieve/45c86..."

Notary
Verify

IF

signature : bstr

unprotected : Unprotected_Header

payload : bstr / nil

Unprotected_Header

* int => any

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

signature : bstr

unprotected : Unprotected_Header

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

signature : bstr

unprotected : Unprotected_Header

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr

Detached Payloads

SCITT Ledger
Append-only

Log

External Storage

Transparency Service

? &statement_location => tstr "https://sbom.sh/retrieve/45c86..."

Notary
Verify

IF

signature : bstr

unprotected : Unprotected_Header

payload : bstr / nil

Content of a SCITT Statement
What is the size and makeup of the statement

Persistence
Where is the Signed Statement,
Metadata and Payload persisted

SCITT Ledger
Verifiable Data

Structure

Transparency ServiceBlob Storage
Raw Data

Small File

Collections of files
large and/or small
Likely packaged in another file (zip/tar) or
referenced by a manifest

Large file

File by Reference: URI to
the location: docker image, npm
package, vcon, youtube video

Inline content (binary)

Manifest: Collections of files,
each referenced by a unique id
(eg: docker image, npm
package, vcon, youtube video)

External Storage

MetaData
Indexable

Structures (json)

COSE_SIGN1 (Envelope)
protected : bstr .cbor Protected_Header

payload : bstr / nil

signature : bstr

unprotected : Unprotected_Header

Content of a SCITT Statement
What is the size and makeup of the statement

SCITT Envelope Payload Types
How is the Statement represented within the
Signed Statement

Inline:
payload: <statement>
content-type: Type of the payload

(application/json, application/bin,)

Hash:
payload: Hash of the content, minimizing the signed-

statement size
content-type: Type of the hashed content

(application/json, application/bin,)
detached-hash-algorityhm: sha-256 | SHA3-512
payload-location: added to resolve a possible

location for the statement (payload)

Detached Payload:
payload: nil
content-type: the type of the detached content

(application/json, application/bin,)
payload-location: added to resolve a possible

location for the statement (payload)

Persistence
Where is the Signed Statement,
Metadata and Payload persisted

SCITT Ledger
Verifiable Data

Structure

MetaData
Indexable

Structures (json)

Blob Storage
Raw Data

Transparency Service

Most relevant
Possible
Least relevant
Least likely

Legend

Small File

Collections of files
large and/or small
Likely packaged in another file (zip/tar) or
referenced by a manifest

Large file

File by Reference: URI to
the location: docker image, npm
package, vcon, youtube video

Inline content (binary)

Manifest: Collections of files,
each referenced by a unique id
(eg: docker image, npm
package, vcon, youtube video)

External Storage

Content of a SCITT Statement
What is the size and makeup of the statement

SCITT Envelope Payload Types
How is the Statement represented within the
Signed Statement

Hash:
payload: Hash of the content, minimizing the signed-

statement size
content-type: Type of the hashed content

(application/json, application/bin,)
payload-hash-algorithm: sha-256 | SHA3-512
payload-location: added to resolve a possible

location for the statement (payload)

Persistence
Where is the Signed Statement,
Metadata and Payload persisted

SCITT Ledger
Verifiable Data

Structure

MetaData
Indexable

Structures (json)

Blob Storage
Raw Data

Transparency Service

Most relevant
Possible
Least relevant
Least likely

Legend

Small File

Collections of files
large and/or small
Likely packaged in another file (zip/tar) or
referenced by a manifest

Large file

File by Reference: URI to
the location: docker image, npm
package, vcon, youtube video

Inline content (binary)

Manifest: Collections of files,
each referenced by a unique id
(eg: docker image, npm
package, vcon, youtube video)

External Storage

• Signed Statement Payload consistent
across services

• Never wonder what size constraint will
fail

• Builds upon existing storage services
• Transparency Services can provide

storage services, they just fill the
payload-location with their storage url

Inline:
payload: <statement>
content-type: Type of the payload

(application/json, application/bin,)

Envelope : COSE_SIGN1
18(/ COSE Sign 1 /
 [
 h'a4012603...6d706c65', / Protected /
 h’ea478a4g…..a20abe28’, / Payload (hash) /
 h'79ada558...3a28bae4’, / Signature /
 h’a023b128…..210gbaeh’ / Unprotected /
)

Protected_Header

{ / Protected /
 1: -7, / Algorithm /
 3: application/vcon+json, / Content type /
 4: h'50685f55...50523255', / Key identifier /
 -42, / payload-hash-algorithm /
 15: { / CWT Claims /
 1: software.vendor.example, / Issuer /
 2: vendor.product.example, / Subject /
 }
}

Unprotected_Header
{ / Unprotected /
 ?: vcon.service/2a0baefa…afaf2f9, / Statement Location /
}

SCITT Statement
Statement Artifact

Issuer

hash

SCITT – COSE
Managing SCITT Statements as COSE Payloads

Hashed Payloads

	Slide 1: SCITT – COSE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: To Be Signed Bytes
	Slide 7: Signed Bytes
	Slide 8: SCITT Statement
	Slide 9: Registering
	Slide 10: Detached Payloads
	Slide 11: Detached Payloads
	Slide 12
	Slide 13
	Slide 14
	Slide 15: SCITT Statement
	Slide 16: SCITT – COSE

